Bridging ligand length controls at selectivity and enantioselectivity of binuclear ruthenium threading intercalators.
نویسندگان
چکیده
The slow dissociation of DNA threading intercalators makes them interesting as model compounds in the search for new DNA targeting drugs, as there appears to be a correlation between slow dissociation and biological activity. Thus, it would be of great value to understand the mechanisms controlling threading intercalation, and for this purpose we have investigated how the length of the bridging ligand of binuclear ruthenium threading intercalators affects their DNA binding properties. We have synthesised a new binuclear ruthenium threading intercalator with slower dissociation kinetics from ct-DNA than has ever been observed for any ruthenium complex with any type of DNA, a property that we attribute to the increased distance between the ruthenium centres of the new complex. By comparison with previously studied ruthenium complexes, we further conclude that elongation of the bridging ligand reduces the sensitivity of the threading interaction to DNA flexibility, resulting in a decreased AT selectivity for the new complex. We also find that the length of the bridging ligand affects the enantioselectivity with increasing preference for the ΔΔ enantiomer as the bridging ligand becomes longer.
منابع مشابه
THESIS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY Structural Requirements for Selective DNA Binding Studies on Mono- and Binuclear Ruthenium Complexes
Ever since the discovery of the role of DNA as the template for protein synthesis, efforts have been made to develop DNA targeted drugs. One of the major challenges in the design of DNA binding drugs is to achieve selective binding to specific DNA sequences, which is crucial to avoid side effects. In this thesis, the relationship between molecular structure and DNA binding properties for a grou...
متن کاملInteractions of binuclear ruthenium(II) complexes with oligonucleotides in hydrogel matrix: enantioselective threading intercalation into GC context.
A stretched poly(vinyl alcohol) (PVA) film provides a unique matrix that enables also short DNA oligonucleotide duplex to be oriented and studied by linear dichroism (LD). This matrix further allows controlling DNA secondary structure by proper hydration (A or B form), and such humid films could potentially also mimic the molecular crowding in cellular contexts. However, early attempts to study...
متن کاملStrong DNA deformation required for extremely slow DNA threading intercalation by a binuclear ruthenium complex
DNA intercalation by threading is expected to yield high affinity and slow dissociation, properties desirable for DNA-targeted therapeutics. To measure these properties, we utilize single molecule DNA stretching to quantify both the binding affinity and the force-dependent threading intercalation kinetics of the binuclear ruthenium complex Δ,Δ-[μ-bidppz-(phen)4Ru2]4+ (Δ,Δ-P). We measure the DNA...
متن کاملPNP-Ligated Heterometallic Rare-Earth/Ruthenium Hydride Complexes Bearing Phosphinophenyl and Phosphinomethyl Bridging Ligands
The reaction of rare-earth bis(alkyl) complexes containing a bis(phosphinophenyl)amido pincer (PNP), LnPNPiPr(CH2SiMe3)2 (1-Ln, Ln = Y, Ho, Dy), with ruthenium trihydride phosphine complexes, Ru(C5Me5)H3PPh3 and Ru(C5Me5)H3PPh2Me, gave the corresponding bimetallic Ln/Ru complexes bearing two hydride ligands and a bridging phosphinophenyl (μ-C6H4PPh2-κP:κC , 2a-Ln) or a bridging phosphinomethyl ...
متن کاملInitial DNA Interactions of the Binuclear Threading Intercalator Λ,Λ-[μbidppz(bipy)4Ru2]4+: An NMR Study with [d(CGCGAATTCGCG)]2**
Binuclear polypyridine ruthenium compounds have been shown to slowly intercalate into DNA, following a fast initial binding on the DNA surface. For these compounds, intercalation requires threading of a bulky substituent, containing one Ru(II), through the DNA base-pair stack, and the accompanying DNA duplex distortions are much more severe than with intercalation of mononuclear compounds. Stru...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Chemistry
دوره 19 20 شماره
صفحات -
تاریخ انتشار 2013